Levels of Realism for Cooperative Multi-Agent Reinforcement Learning
نویسندگان
چکیده
Training agents in a virtual crowd to achieve a task can be accomplished by allowing the agents to learn by trial-and-error and by sharing information with other agents. Since sharing enables agents to potentially reach optimal behavior more quickly, what type of sharing is best to use to achieve the quickest learning times? This paper categorizes sharing into three categories: realistic, unrealistic, and no sharing. Realistic sharing is defined as sharing that takes place amongst agents within close proximity and unrealistic sharing allows agents to share regardless of physical location. This paper demonstrates that all sharing methods converge to similar policies and that the differences between the methods are determined by analyzing the learning rates, communication frequencies, and total run times. Results show that the unrealistic-centralized sharing method – where agents update a common learning module – is the most effective of the sharing methods tested.
منابع مشابه
Effect of levels of realism of mobile-based pedagogical agents on health e-learning
Background: One of the ways for effective communication between learners and instructional multimedia content in mobile learning systems is taking advantage of characters or pedagogical agents. The present study aimed to investigate the effect of the levels of realism in mobile-based pedagogical agents on health e-learning. Methods: The s...
متن کاملReinforcement Learning in Cooperative Multi–Agent Systems
Reinforcement Learning is used in cooperative multi–agent systems differently for various problems. We provide a review on learning algorithms used for repeated common–payoff games, and stochastic general– sum games. Then these learning algorithms is compared with another algorithm for the credit assignment problem that attempts to correctly assign agents the awards that they deserve.
متن کاملCooperative Multi-Agent Systems from the Reinforcement Learning Perspective - Challenges, Algorithms, and an Application
Reinforcement Learning has established as a framework that allows an autonomous agent for automatically acquiring – in a trial and error-based manner – a behavior policy based on a specification of the desired behavior of the system. In a multi-agent system, however, the decentralization of the control and observation of the system among independent agents has a significant impact on learning a...
متن کاملMulti-agent Case-Based Reasoning for Cooperative Reinforcement Learners
In both research fields, Case-Based Reasoning and Reinforcement Learning, the system under consideration gains its expertise from experience. Utilizing this fundamental common ground as well as further characteristics and results of these two disciplines, in this paper we develop an approach that facilitates the distributed learning of behaviour policies in cooperative multi-agent domains witho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012